Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Trends Analyt Chem ; 165: 117107, 2023 Aug.
Article in English | MEDLINE | ID: covidwho-2324531

ABSTRACT

Molecular detection of SARS-CoV-2 in gargle and saliva complements the standard analysis of nasopharyngeal swabs (NPS) specimens. Although gargle and saliva specimens can be readily obtained non-invasively, appropriate collection and processing of gargle and saliva specimens are critical to the accuracy and sensitivity of the overall analytical method. This review highlights challenges and recent advances in the treatment of gargle and saliva samples for subsequent analysis using reverse transcription polymerase chain reaction (RT-PCR) and isothermal amplification techniques. Important considerations include appropriate collection of gargle and saliva samples, on-site inactivation of viruses in the sample, preservation of viral RNA, extraction and concentration of viral RNA, removal of substances that inhibit nucleic acid amplification reactions, and the compatibility of sample treatment protocols with the subsequent nucleic acid amplification and detection techniques. The principles and approaches discussed in this review are applicable to molecular detection of other microbial pathogens.

2.
Trends Analyt Chem ; 161: 117000, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2287168

ABSTRACT

The continuing evolution of the SARS-CoV-2 virus has led to the emergence of many variants, including variants of concern (VOCs). CRISPR-Cas systems have been used to develop techniques for the detection of variants. These techniques have focused on the detection of variant-specific mutations in the spike protein gene of SARS-CoV-2. These sequences mostly carry single-nucleotide mutations and are difficult to differentiate using a single CRISPR-based assay. Here we discuss the specificity of the Cas9, Cas12, and Cas13 systems, important considerations of mutation sites, design of guide RNA, and recent progress in CRISPR-based assays for SARS-CoV-2 variants. Strategies for discriminating single-nucleotide mutations include optimizing the position of mismatches, modifying nucleotides in the guide RNA, and using two guide RNAs to recognize the specific mutation sequence and a conservative sequence. Further research is needed to confront challenges in the detection and differentiation of variants and sublineages of SARS-CoV-2 in clinical diagnostic and point-of-care applications.

3.
ACS Meas Sci Au ; 2(3): 224-232, 2022 Jun 15.
Article in English | MEDLINE | ID: covidwho-2242810

ABSTRACT

Samples of nasopharyngeal swabs (NPS) are commonly used for the detection of SARS-CoV-2 and diagnosis of COVID-19. As an alternative, self-collection of saliva and gargle samples minimizes transmission to healthcare workers and relieves the pressure of resources and healthcare personnel during the pandemic. This study aimed to develop an enhanced method enabling simultaneous viral inactivation and RNA preservation during on-site self-collection of saliva and gargle samples. Our method involves the addition of saliva or gargle samples to a newly formulated viral inactivation and RNA preservation (VIP) buffer, concentration of the viral RNA on magnetic beads, and detection of SARS-CoV-2 using reverse transcription quantitative polymerase chain reaction directly from the magnetic beads. This method has a limit of detection of 25 RNA copies per 200 µL of gargle or saliva sample and 9-111 times higher sensitivity than the viral RNA preparation kit recommended by the United States Centers for Disease Control and Prevention. The integrated method was successfully used to analyze more than 200 gargle and saliva samples, including the detection of SARS-CoV-2 in 123 gargle and saliva samples collected daily from two NPS-confirmed positive SARS-CoV-2 patients throughout the course of their infection and recovery. The VIP buffer is stable at room temperature for at least 6 months. SARS-CoV-2 RNA (65 copies/200 µL sample) is stable in the VIP buffer at room temperature for at least 3 weeks. The on-site inactivation of SARS-CoV-2 and preservation of the viral RNA enables self-collection of samples, reduces risks associated with SARS-CoV-2 transmission, and maintains the stability of the target analyte.

4.
ACS measurement science Au ; 2022.
Article in English | EuropePMC | ID: covidwho-1688311

ABSTRACT

Samples of nasopharyngeal swabs (NPS) are commonly used for the detection of SARS-CoV-2 and diagnosis of COVID-19. As an alternative, self-collection of saliva and gargle samples minimizes transmission to healthcare workers and relieves the pressure of resources and healthcare personnel during the pandemic. This study aimed to develop an enhanced method enabling simultaneous viral inactivation and RNA preservation during on-site self-collection of saliva and gargle samples. Our method involves the addition of saliva or gargle samples to a newly formulated viral inactivation and RNA preservation (VIP) buffer, concentration of the viral RNA on magnetic beads, and detection of SARS-CoV-2 using reverse transcription quantitative polymerase chain reaction directly from the magnetic beads. This method has a limit of detection of 25 RNA copies per 200 μL of gargle or saliva sample and 9–111 times higher sensitivity than the viral RNA preparation kit recommended by the United States Centers for Disease Control and Prevention. The integrated method was successfully used to analyze more than 200 gargle and saliva samples, including the detection of SARS-CoV-2 in 123 gargle and saliva samples collected daily from two NPS-confirmed positive SARS-CoV-2 patients throughout the course of their infection and recovery. The VIP buffer is stable at room temperature for at least 6 months. SARS-CoV-2 RNA (65 copies/200 μL sample) is stable in the VIP buffer at room temperature for at least 3 weeks. The on-site inactivation of SARS-CoV-2 and preservation of the viral RNA enables self-collection of samples, reduces risks associated with SARS-CoV-2 transmission, and maintains the stability of the target analyte.

5.
Chem Sci ; 12(13): 4683-4698, 2021 Mar 02.
Article in English | MEDLINE | ID: covidwho-1189294

ABSTRACT

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated (Cas) protein systems have transformed the field of genome editing and transcriptional modulation. Progress in CRISPR-Cas technology has also advanced molecular detection of diverse targets, ranging from nucleic acids to proteins. Incorporating CRISPR-Cas systems with various nucleic acid amplification strategies enables the generation of amplified detection signals, enrichment of low-abundance molecular targets, improvements in analytical specificity and sensitivity, and development of point-of-care (POC) diagnostic techniques. These systems take advantage of various Cas proteins for their particular features, including RNA-guided endonuclease activity, sequence-specific recognition, multiple turnover trans-cleavage activity of Cas12 and Cas13, and unwinding and nicking ability of Cas9. Integrating a CRISPR-Cas system after nucleic acid amplification improves detection specificity due to RNA-guided recognition of specific sequences of amplicons. Incorporating CRISPR-Cas before nucleic acid amplification enables enrichment of rare and low-abundance nucleic acid targets and depletion of unwanted abundant nucleic acids. Unwinding of dsDNA to ssDNA using CRISPR-Cas9 at a moderate temperature facilitates techniques for achieving isothermal exponential amplification of nucleic acids. A combination of CRISPR-Cas systems with functional nucleic acids (FNAs) and molecular translators enables the detection of non-nucleic acid targets, such as proteins, metal ions, and small molecules. Successful integrations of CRISPR technology with nucleic acid amplification techniques result in highly sensitive and rapid detection of SARS-CoV-2, the virus that causes the COVID-19 pandemic.

6.
Anal Chem ; 92(15): 10196-10209, 2020 08 04.
Article in English | MEDLINE | ID: covidwho-612210

ABSTRACT

Molecular diagnosis of COVID-19 primarily relies on the detection of RNA of the SARS-CoV-2 virus, the causative infectious agent of the pandemic. Reverse transcription polymerase chain reaction (RT-PCR) enables sensitive detection of specific sequences of genes that encode the RNA dependent RNA polymerase (RdRP), nucleocapsid (N), envelope (E), and spike (S) proteins of the virus. Although RT-PCR tests have been widely used and many alternative assays have been developed, the current testing capacity and availability cannot meet the unprecedented global demands for rapid, reliable, and widely accessible molecular diagnosis. Challenges remain throughout the entire analytical process, from the collection and treatment of specimens to the amplification and detection of viral RNA and the validation of clinical sensitivity and specificity. We highlight the main issues surrounding molecular diagnosis of COVID-19, including false negatives from the detection of viral RNA, temporal variations of viral loads, selection and treatment of specimens, and limiting factors in detecting viral proteins. We discuss critical research needs, such as improvements in RT-PCR, development of alternative nucleic acid amplification techniques, incorporating CRISPR technology for point-of-care (POC) applications, validation of POC tests, and sequencing of viral RNA and its mutations. Improved assays are also needed for environmental surveillance or wastewater-based epidemiology, which gauges infection on the community level through analyses of viral components in the community's wastewater. Public health surveillance benefits from large-scale analyses of antibodies in serum, although the current serological tests do not quantify neutralizing antibodies. Further advances in analytical technology and research through multidisciplinary collaboration will contribute to the development of mitigation strategies, therapeutics, and vaccines. Lessons learned from molecular diagnosis of COVID-19 are valuable for better preparedness in response to other infectious diseases.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , RNA, Viral/analysis , Betacoronavirus/chemistry , COVID-19 , COVID-19 Testing , CRISPR-Cas Systems , Clinical Laboratory Techniques , False Negative Reactions , High-Throughput Nucleotide Sequencing , Humans , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Pandemics , Point-of-Care Testing , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Specimen Handling/methods , Viral Load , Viral Proteins/analysis , Wastewater/analysis
SELECTION OF CITATIONS
SEARCH DETAIL